
Section 10: Quadratic 
Programming   
Reference: Chapter 16, Nocedal and 
Wright.  



10.1 GRADIENT PROJECTIONS 
FOR QPS WITH BOUND 
CONSTRAINTS 



Projection 

�• The problem:  
�• Like in the trust-region case, we look for a Cauchy 

point, based on a projection on the feasible set.  
�• G does not have to be psd (essential for AugLag) 
�• The projection operator:  



The search path 

�• Create a piecewise linear 
path which is feasible (as 
opposed to the linear one 
in the unconstrained case) 
by projection of gradient.  



Computation  of breakpoints 

�• Can be done on each component individually 

�• Then the search path becomes on each 
component:  



Line Search along piecewise linear 
path  

�• Reorder the breakpoints eliminating duplicates 
and zero values to get 

�• The path:  

�• Whose direction is:  

 0 < t1 < t2 <�…



Line Search (2) 

�• Along each piece,          find the minimum of the 
quadratic  

�• This reduces to analyzing a one dimensional 
quadratic form of t on an interval.  

�• If the minimum is on the right end of interval, 
we continue.  

�• If not, we found the local minimum and the 
Cauchy point.  
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Subspace Minimization 
�• Active set of Cauchy Point 

�• Solve subspace minimization problem 

�• No need to solve exactly. For example truncated 
CG with termination if one inactive variable 
reaches bound.   



Gradient Projection for QP 

Or, equivalently, if projection does not advance from 0.  



Observations �– Gradient Projection 

�• Note that the Projection �– Active set solve loop 
must be iterated to optimality.  

�• What is the proper stopping criteria? How do we 
verify the KKT?  

�• Idea: When projection does not progress ! That 
is, on each component, either the gradient is 0, 
or the breakpoint is 0.  



KKT conditions for Quadratic 
Programming with BC 



10.2 QUADRATIC 
PROGRAMMING WITH 
EQUALITY CONSTRAINTS 



Statement of Problem 

�• Problem: 

�• Optimality Conditions: 

�• But, when is a solution of KKT a solution of the 
minimization problem?    



10.2.1 DIRECT 
(FACTORIZATION 
APPROACHES) 



Inertia of the KKT matrix 

�• Separate the eigenvalues of a symmetric matrix 
by sign. Define: 

�• Result:  (K=kkt matrix) 

�• But, how do I find inertia of K?, ideally while 
finding the solution of the KKT system?     



LDLT factorization 

�• Formulation: 
�• Solving the KKT system with it: 

�• Sylvester theorem:   
�• And B should have (n,m,0) inertia !!!  

inertia(A)=inertia(CT DC)



10.2.2 EXPLICIT USE OF 
FEASIBLE SET 



Reduction Strategies for Linear 
Constraints 

�• Idea: Use a special for of the Implicit Function 
Theorem 

�• In turn, this implies that                           and 
thus AY is full rank and invertible. 

�• We can thus parametrize the feasible set along 
the components in the range of Y and Z.   



Using the Y,Z parameterization 

�• This allows easy identification of the Y 
component of the feasible set:  

�• The reduced optimization problem.  



How do we obtain a  �“good �“ YZ 
parameterization?  

 

Ax = b AT = Q1
n×m

Q2
n×(n m )

R
m×m

0

�• Idea: use a version of the QR factorization 

�• After which, define  

 

AT
m×m

= Q1
n×m

Q2
n×(n m )

R
m×m

0
Y =Q1,Z =Q2;Q1

TQ2 = 0m×(n m )

AZ[ ]T =Q2
T AT = Q1 Q2 R

m×m

0
= 0(n m )×(m )

AY[ ]T =Q1
T AT = R AY = R T T

= RT



10.2.3 NULL SPACE METHOD 



Affine decomposition 
�• Ansatz (AZ=0): 

�• Consequence:  

�• We can work out the  
Normal component as well:   

pY = AY( ) 1 h



Normal component 

�• Multiply with Z transpose the equation: 

�• Use Cholesky, get p_z and then 
(if not: second-order sufficient does not hold) 
�• Multiply first equation by Y^T to obtain 

�• If I use QR, both are backsolves  (O(n^2))!!! 



10.2.4 ITERATIVE METHODS: 
CG APPLIED TO REDUCED 
SYSTEM 



Reduced problem 

�• Use affine decomposition: 

�•  Reduced problem 

�• Associated linear system:  

AYxY = b xY = AY( ) 1b



Preconditioned Reduced CG 



Preconditioner 

�• How do we do it?  
�• Idea:  

 Wzz Z
TGZ( ) I; Wzz = Z

THZ;Wzz 0



10.2.5 ITERATIVE METHODS: 
PROJECTED CG 



Rephrased reduced CG 

�• Use the 
projection 
matrix: 

�• The algorithm is 
equivalent to:   



10.3 INTERIOR-POINT 
METHODS FOR CONVEX 
QUADRATIC PROGRAM 



Setup 

�• The form of the problem solved:  



Optimality Conditions 

�• In original form: 

�• With slacks:   



Idea: define an �“interior�” path to the 
solution 

�• Define the perturbed KKT conditions as a 
nonlinear system:  

�• Solve successively while taking mu to 0 solves 
KKT:   
F x µ( ), y µ( ), µ( );µ,( ) = 0; yi µ( ) i µ( ) = µ > 0

µ 0 x µ( ), y µ( ), µ( )( ) x*, y*, *( )  satisfies KKT



How to solve it ?   

�• Solution: apply Newton�’s method for fixed mu: 

�• New iterate: 

�• Enforce:   



How to PRACTICALLY solve it?  

�• Eliminate the slacks: 

�• Eliminate the multipliers (note, the 22 block is 
diagonal and invertible)  

�• Solve (e.g by Cholesky  if PD and modified 
Cholesky if not ).  




